	CHART Mapping
	 Version: 1.0 Date: 5/6/2003

Detailed System Design Specification

For the

CHART Mapping Applications
For:

Coordinated Highways Action Response Team (CHART)
	[image: image1.png][image: image2.png][image: image3.png]

	State Operations Center

Hanover Complex

7491 Connelley Drive
Hanover, MD 21076-1701

In Response to:

Contract DBM-2027-TSP

Requisition # J01R3200010
By:

[image: image4.wmf]

Advanced Networked Systems Center

[image: image5.wmf]

May 6, 2003
Revision History

	Date
	Doc. Version
	Description

	May 06, 2003
	1.0
	Initial Version

	
	
	

	
	
	

	
	
	

Table of Contents

51.
Introduction

51.1
Purpose

51.2
References

51.3
Scope

51.4
Design Tool

62.
General System Functionalities

62.1
CHARTWeb Listener Design

82.2
Map Display

132.3
Map Display for Internet

142.4
Web Site Configuration

162.5
External Interfaces

182.6
Load Balancing

192.7
Secure Sockets Layer (SSL)

203.
CHART Events

203.1
Database Design

203.2
Archive Event Data

213.3
Display CHART Events as a List

223.4
Geo-Locate CHART Events

233.5
Geo-locate CHART/EORS Road Closure

274.
CHART and EORS Layers

274.1
County Summary

284.2
Landmarks

284.3
Traffic Speed Sensor (TSS/RTMS)

304.4
Camera

314.5
Closed Circuit TV (CCTV Streaming Video)

324.6
Dynamic Message Sign (DMS)

334.7
Highway Advisory Radio (HAR)

354.8
SHAZAM

354.9
Action Event

364.10
Congestion Event

364.11
Disabled Vehicle Event

364.12
Incident Event

364.13
Special Events

374.14
Weather Events and Safety Events

374.15
CHART Active Roadway Closures

394.16
Winter Storm Management Segments (WSMS)

404.17
Shop/District-Wide Road Condition Summary Report

424.18
EORS Active Road Closure

434.19
EORS Planned Lane Closure

434.20
EORS Weather Road Closure

434.21
EORS Pending Lane Closure

434.22
Roadway Weather Information System (RWIS)

454.23
RWIS Site Map

464.24
Salt Dome

484.25
Automated Vehicle Location (AVL)

505.
Device Editor

505.1
Database Design

505.2
State Transition Diagram for Device Editor

505.3
CCTV

515.4
RWIS

515.5
DMS

525.6
HAR

525.7
SHAZAM

535.8
Landmark

535.9
RTMS

555.10
Salt Dome

576.
User Interface Design

607.
Appendix

607.1
Entity Naming Convention

607.2
Exception Handling

607.3
Background Map Layers Information

677.4
Requirement Design Mapping

Introduction

1.1 Purpose

This document describes the detailed design for CHART Intranet Mapping Application. The purpose of this design document is to provide implementation details that form the basis for the software coding. The details presented in this design fit within the high level approach documented in the high level design document.

The process of creating this detailed design serves its own purpose as well. It is the process of thinking about and software documentation that brings to life future development issues. Early detection of these issues, within the software development cycle, provides for a less costly and more flexible final solution. This process also allows the software to be organized in a logical fashion and allows common functionality to be discovered and re-used.

1.2 References

1. CHART Mapping System Requirement Specification, Computer Sciences Corporation, Enterprise Information Solutions, January 2003.

2. CHART Mapping High Level Design, Computer Sciences Corporation, Enterprise Information Solutions, March 2003.

3. CHART II R1B3 Database Design Computer Sciences Corporation, PB Farradyne Inc., CNSI, ITSI, March 16, 2001, Document #M362-DS-011R0.

4. CHART Lite High Level Design, PB Farradyne, Inc., May 27, 2002.

1.3 Scope

This detailed design document encompasses the base framework design of the CHART Intranet and Internet Mapping and the features identified in the CHART Intranet Mapping System Requirement Specification and CHART Internet Mapping System Requirement Specification.

1.4 Design Tool

Microsoft Visio 2002 was used to create the UML diagrams and database ER diagrams contained within this document.

2. General System Functionalities

2.1 CHARTWeb Listener Design

2.1.1 The CHART Internet/Intranet Mapping task will require enhancements to the existing CHART Web Listener, which will be accomplished as part of this development activity. The Listener provides a conduit between the CHART II application and the Mapping software. The Listener detects CHART II CORBA events and writes the appropriate data to the Mapping database as events come in.

2.1.2 The existing Listener, called the CHARTWeb Listener, already listens for CORBA events from CHART II pertaining to Traffic Events, DMSs, and TSSs. In its modified form, the CHARTWeb Listener will also listen for HAR-related and SHAZAM-related events. In addition, processing of Traffic Events will be enhanced to capture more information about the Traffic Events than it is currently doing. In particular, additional information about participants in a traffic event (organizations and resources) will be analyzed and written to the local database.

2.1.3 See figure below for a class diagram of the new CHARTWeb Listener. In this diagram existing classes are shaded grey. They also have a "lollipop" interface icon extending up from them, as sometime the grey does not show up in printed copies. The attributes and methods indicated for existing classes are new. The existing attributes and methods are not shown.

2.1.4 The class diagram shows a threesome of classes for each of the object types to be handled. So there is a Module, PushReceiver, and DatabaseHelper for each of the existing object types, DMS, TSS, and Traffic Events, as well as the two new object types, HAR, and SHAZAM. The DatabaseHelper classes provide static helper methods only; they are not instantiated. The Module is the top-level class for each object type. The Module sets up the PushReceiver class to receive CORBA events from the CHART II Event Service pertaining to the appropriate object type, and upon receipt of these CORBA events the PushReceiver calls the appropriate helper methods of the DatabaseHelper to make the appropriate updates to the web database.

2.1.5 The DMS and TSS portions of the Listener will be largely unchanged. The Traffic Event portion will be modified to process some of the CORBA Events which it currently ignores. These pertain to participation data. CORBA Events concerning addition of, modification to and removal of Organization Participations and Resource Deployments will be captured and converted to resource data, which will be stored in the Event_Resource table shown in the Traffic Events Database Design. This is a one-to-many relationship: a traffic event can have any number of Organization Participations and Resource Deployments (collectively referred to as resources). Each resource has a unique ID by which it is referred to in future CORBA Events. Note that resources are not routinely deleted: when a resource departs the scene the Departure_TimeStamp will be updated and the record will be left intact. A resource would normally be deleted only if it was mistakenly added. This is similar to Traffic Event processing: close Traffic Events are not immediately deleted but become closed for a period of time. When a traffic event is finally deleted its associated resources will be deleted as well.

2.1.6 The HAR and SHAZAM portions of the listener will operate very similarly to the existing DMS and TSS processes. The listener will accept CORBA events pertaining to device creation and removal, and, mostly commonly, status updates. Status updates for HARs will consist of changes in communications mode (online, offline, maintenance mode); operational status (OK, communications failure); transmitter state (broadcasting or silent); and message. The message indication will indicate only whether there is a non-default message on the HAR or not. It will not provide an indication of what the message is, since audio message .wav files are not included in CORBA events, text messages are infrequent, and message descriptions would not generally provide enough detail to be helpful. Status updates for SHAZAMs will consist of communications mode, operational status, and beacon status (activated (flashing) or not).

2.1.7 Another change to the CHARTWeb Listener will be an ability to refresh all data from CHART on a configurable interval. This is because of the non-guaranteed nature of CORBA events, which raises the possibility that the local database may get out of synch with the CHART II database. The refresh interval will be separately configurable for the different classes of objects -- HARs, DMSs, TSSs, and Traffic Events. It is anticipated that Traffic Events will be refreshed most frequently. The RefreshXxxTask classes, and the scheduleRefreshes() and refresh() methods of the Module classes support this activity. A refresh for a particular class of objects will be completed in one database transaction, so that in the likely case that nothing has changed, there will be no "flicker" of activity detectable through the web database. This will be done by collecting all object instances and their current status at once, then passing the entire list to the DatabaseHelper's refresh method for the database update transaction.

2.1.8 Event processing for all object types will be made more robust, in that if a CORBA Event is received pertaining to an update for a device or traffic event that does not exist in the Web database, the Listener will attempt to actively collect the missing item data from the appropriate CHART II service and then proceed with the update if necessary.

[image: image6.emf]RefreshSHAZAMTask

0

0

uses

11

SHAZAMModule

SHAZAMPushReceiver

SHAZAMDatabaseHelper

«utility»

11

PRE-EXISTING

Lollipop denotes a

preexisting class in

this diagram. Attribtes

and methods listed in

pre-existing classes

are new. Pre-existing

methos and attributes

are not shown.

RefreshHARTask

RefreshDMSTask

RefreshTfcEvtTask

RefreshTSSTask

1

1

1

1

1

1

11

11

HARPushReceiver

HARDatabaseHelper

«utility»

HARModule

0

0

uses

PushConsumerPOA

COTS:

(CORBA Class)

<<utility>> means:

Static Class, provides

static helper methods,

 not instantiated.

ChartWebModuleProperties

11

ChartWebPushReceiver

TSSPushReceiver

TrafficEventPushReceiver

DMSPushReceiver

1

1

1

1

1

1

DMSDatabaseHelper

«utility»

TrafficEventDatabaseHelper

«utility»

TSSDatabaseHelper

«utility»

0

0

uses

0

0

uses

0

0

uses

ChartWebDatabaseHelper

«utility»

ServiceApplicationModule

«interface»

CHARTWebModule

DMSModule

TrafficEventModule

TSSModule

run()

m_tfcEvtModule

run()

m_dmsModule

int getDMSRefreshInterval()

int getHARRefreshInterval()

nt getSHAZAMRefreshIntervali()

int getTfcEvtRefreshInterval()

int getTSSRefreshInterval()

run()

m_tssModule

void scheduleRefreshes()

void refresh()

Timer m_timer

void scheduleRefreshes()

void refresh()

Timer m_timer

void scheduleRefreshes()

void refresh()

Timer m_timer

boolean initialize()

boolean shutdown()

void discoverObjects(trader)

void discoverEventChannels(trader)

void scheduleRefreshes()

void refresh()

Timer m_timer

boolean initialize()

boolean shutdown()

void discoverObjects(trader)

void discoverEventChannels(trader)

void scheduleRefreshes()

void refresh()

Timer m_timer

run()

m_harModule

void refreshTSSs(TSSList)

run()

m_shazamModule

void push(Any data)

void disconnectPushConsumer()

void refreshDMSs(DMSList)

void refreshTfcEvts(EventList)

void addParticipant(RespParticAddInfo)

void modParticipant(RespParticChngInfo)

void delParticipant(RespParticRemoveInfo)

void push(Any data)

void disconnectPushConsumer()

void addHARDevice(id, name, location)

void removeHARDevice(id)

void updateHARStatus(id, harStatus)

void updateHARConfig(id, harConfig)

void updateHARMessage(id, harStatus)

void refreshHARs(HARList)

void addHARDevice(id, name, location)

void removeHARDevice(id)

void updateHARStatus(id, harStatus)

void updateHARConfig(id, harConfig)

void updateHARMessage(id, harStatus)

void refreshHARs(HARList)

The spatial information for CHART and EORS devices and CHART events will be stored in CHARTWeb database. The Geo-locate module will assign the location of the events. Events attribute data will be joined with spatial data as ArcSDE views to feed into ArcIMS for display.

2.2 Map Display

2.2.1 Map Display Overview

ArcIMS is the engine that will be used to publish the CHART application’s map. ArcIMS can publish data in either raster image or XML format. The XML format describes both the spatial and attribute data using a set of ArcXML tags. ArcIMS provides the publishing services via an ArcXML request/response interface. The requests and responses are packaged in ArcXML format.

The map frame performs the main task of displaying CHART events and devices. The map display is accomplished using a combination of client-side JavaScript modules and server-side ASP.Net code modules. The background map will be generated by ArcIMS as a raster image. The map configuration is based on an ArcXML map configuration file that defines the data sources, data layers and the color, size and pattern for each layer. The ArcXML file is stored on the server running the ArcIMS server and is loaded when the server initiates. The events/devices are displayed as VML elements on top of the raster image background layer. The VML data for most of the layers will be created using the XML Stylesheet Language (XSL) transformation applied on the ArcXML data. XSL style sheet file defines the transformation method that converts one XML format to another format. For some complicated device displays, the ArcXML will be parsed into a XML DOM and an ASP.Net module will handle the generation of the VML code.

When a user selects one theme for display, the map frame sends the request to server to retrieve the background map. At the same time, it also sends a list of CHART event/device layers that are defined to display for the theme. The map page receives the request and parses the requested information, such as the extent, zoom and pan requirements.

The mapping web site will utilize the ArcIMS ActiveX connector to communicate with the ArcIMS server. CHARTMap will initiate an ArcIMS ActiveX connector and perform a set of functions to configure the connector, including setting the map properties. CHARTMap will then use the ArcIMS ActiveX connector to send the request to ArcIMS to retrieve the background map.

For the VML data, the application will utilize an interface (ICHARTLayerHandler interface) to serve as the common interface for CHART layer handler objects. Each object will correspond to one type of CHART event and device. These layer handler objects will manage the logistics of mapping events and devices, outputting them into VML format, as well as displaying the tool tips. Based on the layers requested, CHARTMap will initiate one CHARTLayerHandler object for each displayed layer and will invoke the GetVML method to retrieve the VML text for the layer. The layer handler object will then create ArcXML requests. The layer handler will then send them to the ArcIMS server to retrieve the device/event spatial data in ArcXML format. When the response is received, an XSLT style sheet is attached to the ArcXML file that transforms it into the appropriate VML format. After all layer data has been retrieved, the CHARTMap application will package the VML and send it to the client browser. When the client browser receives the VML, it will parse the data and assign it to the appropriate map page DIV. This will result in the browser displaying the VML graphics over the ArcIMS map.

VML elements not only display map graphics but also contain scripting functions including responding to mouse events and other user behaviors on the client’s browser. One of the main scripting uses is the display tool tip information. Remote scripting capabilities are used to implement tool tip functionality on the client browser. When the user moves the mouse over the VML element, a request is sent to CHARTTooltip object to retrieve the tooltip for the feature. The request then gets redirected to the appropriate CHARTLayerHandler object that manages the layer of the feature. The layer handler object then sends the request to ArcIMS and updates the response with the appropriate format. When the client browser receives the response, it displays the information as a DIV using “absolute positioning”, locating it near the user’s cursor.

The VML display also provides the functionality for dynamic projection of the data. Because VML elements carry real world coordinates, they can be dynamically projected to the new map coordinate space (as in the process of a zoom in function). Since this functionality is handled on the client side (on the browser), there is no need to make a round trip to the server for data retrieval.

The client browser will setup a timed execution of the GetLayer function to update VML layer information. Because of the nature of each device/event type, each layer may have different update interval. The intervals can be configured from the web site configuration XML file. If a layer is due for update, the client’s browser will initiate remote scripting request to retrieve a new VML layer and replace the current layer. This will result in a display update. When a user switches themes, the GetLayer function is also called for all layers that were not visible on the previous theme.

The application will use VML to display CHART devices and events so that their data can be refreshed quickly without imposing significant performance load on the server. Using VML, part of the display computation is off-loaded from server to the client browser.

Similar to ICHARTLayerHandler, the IwebLayerHandler contains functions that handle the devices and events display for web map publishing. It also provides the tooltip functions for the web map site. The device and events that need to publish web data implement the IwebLayerHandler interface.

2.2.2 Object Diagram

[image: image7.png]
[image: image8.png]
As discussed in section 2.2.1, the ICHARTLayerHandler and IwebLayerHandler are the main interfaces that handle map display and device/event information.

The Ieditable interface is implemented by a number of classes that can be edited via the device editor or event edit tool.

2.2.3 Multiple Map View

Each new browser window will be assigned with a new session ID. Session ID’s will facilitate a single users – multiple session environment without information confusion either on the client or the server side.

Each view will retrieve a separate set of XML based CHART/EORS device/event data at the configured interval. Separate XML data is required due to the difficulty in managing shared data between multiple views.

2.2.4 Legend and Layer Control

The default ArcIMS legend utility is limited in its functionality. A legend ASPX page will be implemented to facilitate the collapse and expansion of CHART event/device layer symbology settings. The legend will display the layer settings for the visible layers.

The legend page will also include ON/OFF display switches for CHART device/event layers.

2.2.5 Map Navigation

The map server application will manage the basic map navigation such as zoom in, zoom out and pan. Advanced navigation functions such as zoom to a county and mile point on a route will require a set of utility objects. These objects will be developed with search methods for features, intersections and dynamic segmentation processing. These objects will also allow for zoom to feature, road intersections and mile points.

The Navigation tool will assist with finding locations based on county, route and mile point information. When user clicks the Go button, the system will perform the following functions:

1. User enters county only – Zoom to the county

2. User enters county, route type and route number – Zoom to the route extent

3. User enters county, route type, route number and mile (if the route has MDTA mile value, MDTA mile input will display) – Center on the route and mile point

4. User enters county, route type, route number, intersecting street name – Center on the intersection point.

5. User can also select a landmark to zoom to.

[image: image9.png] [image: image10.png]
2.2.6 Identify Information from Map

Identify results (after a map click) will include MD State Plane coordinate display of the click point. Identify will also display the route ID and mile point information. The results will include a list based on the background layers defined as “identifiable”. The identify operation will be executed on all the identifiable layers and display identify results for these layers (if a feature is found at the location).

2.3 Map Display for Internet

The Internet clients will display a map generated from the ArcIMS server with an image map attached to it to display the dynamic tool tips.

The map will be generated with the background map layers in the same fashion as the Intranet map. Instead of using the VML elements, devices and events will be rendered by the server side map layer handler objects that implements the IwebLayerHandler. When a layer is required for map rendering, an instance of the corresponding IWebLayerHandler object is created and the Draw method is called to render the device or event.

Along with the map image, a set of image map “hotspots” will be generated by the GetImageMap function of the IwebLayerHandler. The hotpots will be sent to the client browser. When user mouses over a hotspot, a remote scripting request will be sent to the server IwebLayerHandler object’s GetTooltip function to retrieve the tooltip for the device or element. The tooltip will be generated based on an AXL query and sent back to the browser. The browser will display the tool tips as DHTML layers on map. The client side javascript code will handle the cross-browser compatibility issues.

2.4 Web Site Configuration

2.4.1 Class Diagram

[image: image11.png]
2.4.2 Map configuration is managed by the web site configuration object, which can be serialized to and de-serialized from an XML file.

2.4.3 At application initialization, an instance of the web configuration object is created and the default configuration is loaded from the XML file.

2.4.4 The system administrator will be able to modify the XML file to change the web site settings including:

1. Add/Remove/Edit saved map views.

2. Modify layer visibility for themes.

3. Assign map view to operation center

2.4.5 In the web site configuration, a set of parameters will configure the string for linking the displayed devices and events back to the CHART Lite pages. These URL links will take the form of “http://[servername]/[pagename]”. The link will attach the device/event ID to the URL to retrieve the CHART Lite Page.

2.5 External Interfaces

2.5.1 There are two entry points to the web site; the default.aspx and CHART/default.aspx page. All Intranet mapping requests shall be sent to the default.aspx page using http protocol. All requests from CHART users, usually from CHART II application or CHART Lite shall be sent to CHART\Default.aspx page using HTTPS protocol. Both pages can accept a set of request parameters that allows integration with CHART Lite or CHART application. If the CHARTDefault.aspx receives a request that does not have user name and password embedded in it, the system will display login screen. The system will check with CHART II database to check whether the user name and password matches and the user have “manage traffic incident” right. If so, the user is authenticated as a CHART user and allowed to locate events.

2.5.2 HTTP/HTTPS Request Parameter Descriptions

Here following is a list of the parameters that will be available to external systems:

	
	Parameter Name
	Possible Values
	Additional Parameters
	Description

	1
	usr
	[text]
	
	CHART user ID

	2
	pwd
	[text]
	
	CHART password

	3
	opctr
	[text]
	
	Operation center ID

	4
	cmd
	ViewEvents
	
	Open map view with all event listed

	5
	
	
	Filter=UnMapped/Mapped/All

	Open map view with list of events filtered to mapped or unmapped events or all events

	6
	
	
	OpCenter=xxxx
	Filter events to only the ones for the specified operation center.

	7
	
	LocateEvent
	EventID=xxxx
	Open map view, display the locate event UI. Zoom to the county of the event. If the event description provide enough information to geocode the event, center on the geocoded location. If the geocode provide several candidate locations, display them on the locate event UI.

	8
	
	LocateClosure
	Type=construction/weather/pending/Planned&permit=xxxx&eorssvr=xxx.xxx.xxx.xxx
	Assign closure geometry. System will query the road closure record in EORS to zoom to the county, road of the closure. System will display “Locate Closure” interface.

	9
	theme
	Theme name
	
	Initialize map to the specified theme.

	10
	zoom
	Rect
	L=x&R=x&T=x&B=x
	Zoom to map with extent specified by left, right, bottom, top ranges specified in MD State Plane coordinates.

	11
	
	OpCenter
	OCID=xxxx
	Zoom to default map extent of the operation center.

	12
	
	IntSect
	St1=MD-32&St2=I-95&Extent=n
	Center on intersection of street 1 and street 2. If more than one candidate is found, show a list for user’s selection. Set map extent to n miles

	13
	
	RtMile
	Rt=I-95&Mile=2&Extent=n
	Center on the specified route and mile marker. Set map extent to n miles

	14
	
	County
	County=xxxx
	Zoom to a county

	15
	
	District
	Dist=xxxx
	Zoom to a district

	16
	
	PreDefined
	ExtName=xxxx
	Zoom to a pre-defined map extent named xxxx

	17
	
	Device
	Type=xxx&ID=xxxx&Extent=n
	Zoom to the specified device, with map extent of n miles. If n is omitted extent will be set to 5 miles.

	18
	
	Event
	ID=xxxx&Extent=n
	Zoom to the specified device, with map extent of n miles. If n is omitted extent will be set to 5 miles.

	19
	
	EORSClosure
	Permit=xxxx&Extent=n
	Center on the specified closure with map extent of the larger of closure extent of closure or n miles. If n is omitted, extent will be set to 5 miles.

2.5.3 All of the above parameters are optional. If they are omitted, the system will load the default web site configuration.

2.5.4 If the request contains valid a username and password, and successfully authenticates with the CHART user database that the user has “Manage Traffic Event” right, the session is marked as CHART. The system will display the event editing links for the user. Otherwise, all editing links will be hidden.

2.5.5 If the map application is running in Intranet mode, it will not launch the CHART Lite data edit links when user clicks on the event/device.

2.5.6 If the map window is originally launched from CHART applications, i.e. running in CHART mode, the map window will be able to use the javascript “self.opener” methods to point back to the CHART Lite application and launch appropriate page to edit the device and event information.

2.5.7 If the username and password information is missing or if they cannot be authenticated within the CHART user database, the session is marked as ReadOnly. ReadOnly sessions will not display editing buttons.

2.5.8 Opctr parameter indicates the default operation center of the user. This will be used as the default filter for the event display.

2.5.9 Cmd parameter sets the default action of the mapping application.

2.5.10 If the cmd parameter is empty, the mapping application initializes to “Zoom in” mode, displaying the legend in the “data” frame.

2.5.11 If the cmd parameter is ViewEvents, the mapping application initializes to “Zoom in” mode and displays the event list in the “data” frame. Additional parameters can further specify the event list filter to either unmapped events, mapped events, or all events. Also, an additional parameter can override the operation center setting to list the events of an operation center.

2.5.12 If the cmd parameter is LocateEvent, the mapping application initializes to “Locate Event” mode, displaying the “Locate Event” UI as shown in 4.3.2. This will allow the user to locate the event.

2.5.13 Theme parameter controls the theme to display.

2.5.14 Zoom parameter controls the map extent. There are a few possible ways to specify the map extent. Extent allows map extent to be specified as a set of left/right/top/bottom bounding rectangle coordinates. OpCenter instructs map to zoom to the default map extent of the operation center. IntSect instructs map to zoom to intersection of two routes. RtMile zooms the map to a route and mile point. County zooms the map to a county. District zooms the map to a district. Predefined zooms the map to a predefined map extent. Event zooms the map to an event. Device zooms the map to a device.

2.6 Load Balancing

2.6.1 Session Consistency

For the load-balanced servers, each request may be directed to either one of the servers at by operating system level balancing. Requests from a client may go to different servers, causing the session information to be inconsistent. To prevent this from happening, in the load balancing server setup, the “Affinity” configuration should be set to “Single Affinity”, i.e. all requests from the same client will always go to the same server. This will ensure the session consistency.

2.6.2 Database Consistency

Using the SQL Server’s replication method, there will be a delay from when the master database receives the data update to when the replica database gets it. The latency is typically within a few seconds. To ensure data consistency for CHART operation users, if a user is logged in as a CHART user, the application will utilize data connections to the master database. All other users will use the load-balanced server database connection.

In the unlikely event of the master database failure, the following actions need to be taken to “fail-over” to use the “replica” database for CHART operation’s mapping application:

1. Modify the configuration setting for the CORBA event listener to point to the “replica” database to write all new CHART event data.

2. Modify the web site configuration to point to the “replica” database to retrieve and edit CHART spatial data

3. Restart CORBA event listener service and web server service to point to the fail-over database.

The fail-over configurations/procedures will be streamlined and clearly documented.

2.7 Secure Sockets Layer (SSL)

2.7.1 CHART needs to acquire and maintain a digital certificate for the intranet server from a certificate authority.

2.7.2 The map server name must remain consistent with the certificate and all links will use the same server name. If the server is referred using IP address or local server name, etc., the user will see an “inconsistent alert” for the certificate and the resource.

2.7.3 IIS supports the configuration of a single SSL folder in the web application that contains HTTP folders. The session information will remain consistent between SSL portion of the web site and the non-SSL portion.

3. CHART Events

3.1 Database Design

[image: image12.wmf]event_lane_status

FK1

eventid

lanenumber

FK3

lanetype

FK2

lanestate

lanedirection

LaneDescription

event_lane_type_lkp

lanetype

description

event_roadcondition_lkp

conditionid

description

event_county_lkp

countyid

name

abbr

event_vehicle_data

FK1

eventid

carsinvolved

carsoverturned

pickupsinvolved

pickupsoverturned

trucksinvolved

trucksoverturned

truckslostload

trailersinvolved

trailersoverturned

trailerslostload

trailersjackknifed

motorcyclesinvolved

event_direction_lkp

directiontype

description

event_event_type_lkp

eventtypeid

description

event_incident_details

PK,FK1

eventid

FK2

incidenttype

hazmat

FK3

roadcondition

event_basicinfo

PK

eventid

FK2

eventtype

eventname

location

FK3

direction

FK1

county

queuelength

falsealarm

opcenter

scenecleartime

delaycleartime

confirmtime

closed

created

updated

FK4

SourceType

SourceDescription

EORSTrackingNum

event_incident_type_lkp

incidenttypeid

description

event_weather_condition_lkp

FK1

eventid

hurricane

tornado

blizzard

wind

rain

reducedvisibility

ozone

highwater

flood

landslide

other

description

event_lane_state_lkp

statetype

description

Event_Participation

PK

Event_Participation_ID

FK1

EventID

ParticipantName

FK2

ParticipantType

NotifiedTime

ArrivedTime

DepartedTime

ReceivedTime

g_Event

PK

ObjectID

Shape

FK1

EventID

X

Y

UpdateTime

UpdateBy

gv_Event

ObjectID

Participant_Type_lkp

PK

Participant_Type_ID

Description

Event_Source_lkp

PK

Event_Source_ID

Description

The gv_Event view joins the event_basicinfo, g_Event, and event_event_type_lkp tables. This layer only uses events that have an action event type.

3.2 Archive Event Data

The archive database will have the following structure:

[image: image13.wmf]event_basicinfo

PK

eventid

FK2

eventtype

eventname

location

FK3

direction

FK1

county

queuelength

falsealarm

opcenter

scenecleartime

delaycleartime

confirmtime

closed

created

updated

FK4

SourceID

SourceText

EORSTrackingNum

g_Event

PK

ObjectID

Shape

FK1

EventID

X

Y

UpdateTime

UpdatedBy

A scheduled job (every day at 2am) will execute SQL Scripts that move all g_Event and event_basicinfo records that are closed and more than one year old to archive database.

3.3 Display CHART Events as a List

3.3.1 The event list will be displayed as a grid like the following:

[image: image14.png]
3.3.1.1 At the top, the page should allow user to select a filter for the list of events. The filter has the following selections:

· All Open Events

· All Unmapped Events

· All Mapped Events

· All Closed Events (past 8 hours)

This will be followed by open event filters for all distinct operation centers in the current event list.

3.3.1.2 The “A”ction column displays the action buttons. If an event is already located, a “S”how button will allow user to center the map at the event. If an event is not yet located, a “L”ocate button will allow user to locate it.

3.3.1.3 The “T”ype column displays an icon indicating the type of event.

3.3.1.4 If the event type is action, disabled vehicle, or incident, a row mouse over will display the event participants.

3.3.1.5 If the event type is closure, and there is EORS permit information associated with the closure, a row mouse over will display the permit information of the event.

3.3.2 User can click on the grid header to sort the section list by the selected field. A second click will sort the data in the opposite direction. Clicking the “A”ction column will sort by the “Mapped/Unmapped” status.

3.4 Geo-Locate CHART Events

3.4.1 State Transition Diagram

[image: image15.wmf]Navigating

Map

Assigning

Event

Location

Move Event

Location

Confirming

Location

Invoke Zoom/Pan

Commands

Invoke “Locate Event”

CommandFrom Event List

Click on Map

Click and Drag Event

Click and

Drag Event

Release Mouse

Event

Information

Saved to DB

Confirm

Selecting

Event

Select

Move

Tool

· The system will initialize in Navigating Map mode allowing the user to perform zoom/pan functions.

· When user invokes “Locate Event” command from the event list, the system enters into the “Assigning event location” mode. The system will wait for a map mouse click to locate the event. Upon clicking, the system will prompt the user to confirm the location. Once confirmed, the information is saved to database.

· When user selects the “Move event” tool, the system enters into the “Select event” mode. When the performs a click-n-drag on an event, the system will move the event to the new location specified by the Mouse Up event. When user releases mouse, the system also prompts for confirmation and then saves the data to database.

3.4.2 UI Design

When user needs to assign an event location, the following screen will be displayed:

[image: image16.png]
The system will display the basic event information at the top of the page. Selecting the “Map it” button and performing a map click will assign the location for the event. As the “Move event” action is not often used, it will be located in a separate menu option.

3.5 Geo-locate CHART/EORS Road Closure

3.5.1 Database Design[image: image17.png]
g_ClosurePt and g_ClosureLn hold the point and line geometry for the closure. Gv_EORSClosurePt is an SDE view that joins the g_ClosurePt and EORS Permit tables on the Permit key. Gv_EORSClosureLn is an SDE view that joins the g_ClosureLn and EORS Permit tables on the Permit key. gv_CHARTClosure is a SDE view that joins the g_ClosurePt and CHART Event tables on the EventID key (CHART closures only need point display).

Some CHART road closure events have EORS road closures tracking number indicating that it is associated with an EORS road closure. In this case, the CHART closure will be able to inherit the spatial information from the matching EORS closure. At the time event_basicinfo is updated, a trigger will check the g_ClosurePt and g_ClosureLn tables for a matching EORS tracking number. If a match is found, the g_ClosurePt EventID field will be populated with the CHART event ID. This will make the closure’s spatial information available for CHART closure display.

3.5.2 For EORS closures, the system will query PERMIT_View (currently use mapping_closures_locate) to retrieve the Route Type, Route Number and Direction. The map will then zoom to the county and highlight the road. For CHART closures, zoom to the county. The system will display the following page on data frame:

[image: image18.png]
3.5.3 Users will have two options for specifying starting or ending lane closure mile points. Option one will be to input the state mile point value in the Start Mile Point and End Mile Point input box. The inputs will be checked against the database to verify that they are valid for the specified route. Option two is to click “Locate From Map” button and the click on a location on the route. The system will retrieve the mile point information and populate the interface. If the user clicks do not fall on the specified route, the system will alert user of the error.

3.5.4 If the end of closure point is the same as the start point, the user can click the “Same as Start Point” button.

3.5.5 Clicking the “Show on Map” button will display the road closure segment and starting/ending points for input verification. Steps 3.4.4 and 3.4.5 can be repeated if user is not satisfied with the location(s).

3.5.6 After start point is set, “Save” button is enabled allowing the user to save the information on the server. When user clicks the “Save” button, the system will validate the data. If there are errors, system will alert user of the error. If data is valid, the system will store the starting point to the g_ClosurePt table and the line information (if end point is not the same as start point) to the g_ClosureLn spatial layer.

4. CHART and EORS Layers

4.1 County Summary

4.1.1 The system will display snow emergency plan activations, safety and weather events, and un-located events for each county at a county location. Snow emergency counties will be filled with yellow color. If there are un-mapped events for the county, an icon will display near the county name. When user mouse-over the icon, tooltip should display the list of un-mapped events. When user clicks on the icon, system will display the textual page for the events in the county.

4.1.2 Database Design

[image: image19.wmf]g_County

PK

ObjectID

County

Name

Abrev

District

gv_SEP

g_CountyPt

PK

ObjectID

County

Name

Abrev

District

gv_SEPPt

sep

county

declared

Please refer to the event database design for the tables used to retrieve event information.

g_County is a polygon layer with county boundary.

g_CountyPt is a point layer with county centroids.

gv_SEP is a view that joins the g_County and SEP tables (from CHARTWeb DB) on county ID.

gv_SEPPt is a view that joins the g_CountyPt and SEP tables (from CHARTWeb DB) on county ID.

On the

4.1.3 The VML elements will be utilized to display the county emergency plan point symbol. When a county center point is moused over, the tool tip provider will display the weather, safety and un-located event information, including:

· County Name

· Whether Snow Emergency Plan Activated and Date/Time Declared

· Un-located events

· Weather, safety events

4.1.4 UI Design

[image: image20.png]
4.2 Landmarks

4.2.1 Database Design

[image: image21.wmf]g_Landmark

PK

ObjectID

Shape

FK1

Category

Name

Description

URL

UpdateTime

Landmark_Category_lkp

PK

Category_ID

Description

4.2.2 VML elements will be utilized to display the landmark icons ([image: image22.png], Landmark.gif). Tool tips and the related URL link will be displayed when user clicks the Landmark icon.

4.3 Traffic Speed Sensor (TSS/RTMS)

4.3.1 The system will display traffic speed sensors as VML elements in the shape of colored arrows.

4.3.2 Database Design

[image: image23.wmf]tss_comm_mode

PK,FK2

device_id

FK1

mode_id

timestamp

tss_traffic_data

PK,FK1

device_id

PK

zone_group_num

speed

volume

percent_occupancy

timestamp

tss_devices

PK

device_id

device_name

location

removed

timestamp

assigned

FK1

TSSSiteID

tss_zones

PK,FK1

device_id

PK

zone_group_num

description

direction

default_speed

timestamp

Display

Bearing

DirectionText

tss_op_status

PK,FK2

device_id

FK1

status_id

timestamp

tss_comm_lkp

PK

mode_id

mode_text

time_stamp

tss_status_lkp

PK

status_id

status_text

time_stamp

g_TSSSite

PK

TSSSiteID

ObjectID

Shape

Location

X

Y

G_TSSSite is a point layer that stores the RTMS sites.

Gv_TSS is a view that joins the related tables. See current vwTSSGIS view for details.

4.3.3 If there are multiple collocated speed detectors, pointing in various traffic directions, the map will display one arrow for each traffic direction. However, each sensor location will have only one tool tip.

4.3.4 Overlapping arrow offsets will be handled via the left and top coordinates of the VML elements. These coordinates will be calculated based on the x and y map coordinates and the bearing field. Offsets will be handled when the web server writes information about a sensor location in the VML string. VML object rotation is accomplished via the bearing field.

4.3.5 The sensor shape type is based upon speed data and the detector status. The RTMSTooltipProvider function will construct a single tool tip for all detectors collocated on a single point. Shape types will be changed when the appropriate speed value is obtained.

4.3.6 The following conditions define the “out of service” parameters for any detector. Under these conditions the VML shape type will be a gray arrow.

· Status is Offline

· Communication is not ok

· Speed is zero or greater than 100 mile per hour

· Volume invalid (volume = 0)

4.3.7 The RTMSTooltipProvider will provide the following tool tip information:

· Detector location

· Last data report date and time

· Road direction(s) and speed(s)

4.3.8 If the speed detector is out of service, the RTMSTooltipProvider function will provide the outage cause (communication error, testing, maintenance, etc) instead of road direction/speed information.

4.3.9 The arrows will be colored based on the current status. The table below presents the images and their respective status.

	Image
	Image Name
	Status

	[image: image24.png]
	RTMSRed.gif
	Speed is Less Than 30 MPH

	[image: image25.png]
	RTMSOrange.gif
	Speed is >= 30 and <= 50 MPH

	[image: image26.png]
	RTMSGreen.gif
	Speed is Greater Than 50 MPH

	[image: image27.png]
	RTMSGray.gif
	Not updated in last 10 minutes, Status is Offline, Communication is not ok, Speed is zero, Volume invalid

4.4 Camera

4.4.1 The system will display still-image cameras as point icons at the camera’s physical location. Each camera is represented by an <image> VML element. The source image is ([image: image28.png], Camera.gif).

4.4.2 Database Design

[image: image29.png]

The gv_Camera view is a filtered dataset from g_RWIS. Gv_Camera contains only the records that meet the following criteria: where HasCamera=true.

4.4.3 The CameraTooltipProvider will display the camera location information. The camera image page will be launched when the icon is clicked.

4.4.4 The Camera.asp page will perform a check for the image age. If the image is more than 2 hours old, an “image is not available” message will be displayed.

4.5 Closed Circuit TV (CCTV Streaming Video)

4.5.1 The system will display all streaming video cameras (not only those shown on CHART internet site) as point icons using VML. VML elements are based on the g_CCTV table.

4.5.2 Database Design

[image: image30.wmf]g_CCTV

PK

ObjectID

Shape

FeedName

Encoder

IsTour

Location

X

Y

4.5.3 For Intranet web site, the CCTVs that are available to Internet is colored in orange ([image: image31.png], CCTVOrange,gif). The others are colored in blue ([image: image32.png], CCTVBlue.gif). VML elements will display CCTV icon and tooltip location information using <image> VML element. When user clicks on the icon, system display the “Which direction is this camera facing” page.

4.5.4 For Internet web site, all CCTVs are initially colored in blue ([image: image33.png], CCTVBlue.gif). When user clicks on one CCTV icon, system display the video feed. At the same time, the selected CCTV icon and CCTVs that belong to the same tour group are displayed in orange ([image: image34.png], CCTVOrange,gif).

4.6 Dynamic Message Sign (DMS)

4.6.1 Database Design

[image: image35.wmf]g_DMS

PK

ObjectID

Shape

FK1

DMSID

Name

X

Y

Bearing

Display

Location

UpdateTime

dms_devices

PK

id

name

location

type

FK1

comm_mode

FK2

opstatus

message

removed

updated

beacon

device_comm_lkp

PK

mode_id

mode_txt

device_op_status_lkp

PK

status_id

status_txt

gv_DMS

ObjectID

G_DMS is a point layer that stores the sign locations.

Gv_DMS is a view that joins all four tables in the above diagram. Please see the current vw_mapping_DMS view for details.

4.6.2 DMS locations are represented by a VML <image> element. The web server assigns the source image to each <image> element based on the following sign information:
	Image
	Image Name
	Status

	[image: image36.png]
	DMSOrange.gif
	Online Communication Failure

	[image: image37.png]
	DMSWhite.gif
	Maintenance Mode

	[image: image38.png]
	DMSBlue.gif
	Online Without Active Message

	[image: image39.png]
	DMSGray.gif
	Offline

	[image: image40.png]
	DMSGreen.gif
	Online with Active Message

	[image: image41.png]
	DMSRed.gif
	Online Hardware Failure

4.6.3 The DMSTooltipProvider will gather the following information:

· DMS ID

· Location

· Message, if available, or “No message”

· Beacons, if activated

· Statuses if “out of service”

· Communication failure

· Offline

· Maintenance Mode

· Hardware Failure

4.7 Highway Advisory Radio (HAR)

4.7.1 Database Design

[image: image42.png]

G_HAR is a point layer that stores radio locations.

Gv_HAR is a view that joins the g_HAR and HAR tables on “HARID” field.

4.7.2 Each HAR location is represented by a VML <image> element. The web server assigns a source image to each <image> element based on the following radio information:

	Image
	Image Name
	Status

	[image: image43.png]
	HARGray.gif
	Offline

	[image: image44.png]
	HARBlue.gif
	Online without active message

	[image: image45.png]
	HARGreen.gif
	Online with active message

	[image: image46.png]
	HAROrange.gif
	Online with communication failure

	[image: image47.png]
	HARRed.gif
	Online with hardware failure

	[image: image48.png]
	HARWhite.gif
	Maintenance mode

4.7.3 HAR VML elements will display tooltip information including device ID, location and frequency. If the HAR is “out of service” the tooltip will display one of the following status possibilities:

· Communication failure

· Offline

· Maintenance Mode

· Hardware Failure

4.8 SHAZAM

4.8.1 Database Design

[image: image49.png]
G_SHAZAM is a point layer that stores the SHAZAM locations.

Gv_ SHAZAM is a view that joins the g_ SHAZAM and SHAZAM tables on the “SHAZAMID” field.

4.8.2 The system will display SHAZAM locations as point icons. The icon shall indicate status in the fashion of the following table:

	Image
	Image Name
	Status

	[image: image50.png]
	SHAZAMGray.gif
	Offline

	[image: image51.png]
	SHAZAMBlack.gif
	Online but not active

	[image: image52.png]
	SHAZAMBlue.gif
	Online and active

	[image: image53.png]
	SHAZAMOrange.gif
	Online with communication error

	[image: image54.png]
	SHAZAMRed.gif
	Online with hardware failure

	[image: image55.png]
	SHAZAMWhite.gif
	Maintenance mode

4.8.3 A SHAZAM icon mouse over will display a tool tip with the location, device ID, direction and activation status.

4.9 Action Event

4.9.1 Please refer to section 3.1 for database design

4.9.2 The system will display Action Events as point icons ([image: image56.png], EventGreen.gif).

4.9.3 The Action Event VML element will display a tool tip showing the following information:

· Event name

· Source

· Controlling operation center

· Direction

· Participants

4.10 Congestion Event

4.10.1 Please refer to section 3.1 for database design

4.10.2 The system will display Congestion Events as point icons ([image: image57.png], EventGray.gif)

The gv_Event view joins the event_basicinfo, g_Event, and event_event_type_lkp tables. This layer only uses congestion events.

4.10.3 The CongestionEventTooltipProvider will gather the same information as ActionEventTooltipProvider, except for participants.

4.11 Disabled Vehicle Event

4.11.1 The system will display disabled vehicle events as point icons ([image: image58.png], EventWhite.gif)

The gv_Event view joins the event_basicinfo, g_Event, and event_event_type_lkp tables. This layer only uses disabled vehicle events.

4.11.2 The DisabledVehicleEventTooltipProvider will gather the same information as ActionEventTooltipProvider.

4.12 Incident Event

4.12.1 The db design is the same as Action Event db design.

4.12.2 The System will display incident events as point icons ([image: image59.png], EventRed.gif)

The gv_Event view joins the event_basicinfo, g_Event, and event_event_type_lkp tables. This layer only uses incident events.

4.12.3 The IncidentVehicleEventTooltipProvider will gather the same information as ActionEventTooltipProvider, plus vehicle count and number of lanes closed.

4.13 Special Events

4.13.1 The db design is the same as Action Event db design.

4.13.2 The system will display Special Events as icons regarding conditions related to stadium events and other similar activities. ([image: image60.png], EventBlue.gif)

The gv_Event view joins the event_basicinfo, g_Event and event_event_type_lkp tables. This layer only uses special events.

4.13.3 The SpecialEventTooltipProvider will gather the following information:

· Event name

· Source

· Controlling operation center

4.14 Weather Events and Safety Events

4.14.1 The Weather and Safety events will be assigned at the county level. The system will map the regional data at the county level. Please see section 4.1 for additional information.

4.14.2 As part of the county summary tool tip, CountyTooltipProvider will provide following information:

· Weather and safety event name

· Source

· Controlling operation center.

4.15 CHART Active Roadway Closures

4.15.1 Database Design

[image: image61.png]

gv_CHARTClosure is an SDE view that joins the event_basicInfo and g_ClosurePt tables on the EventID key. The active road closures layer displays only the records whose event type is active closure.

4.15.2 The system will display CHART active road closures as point icons ([image: image62.png], RCActive.gif) at the closures starting location.

4.15.3 CHART active closures will be displayed as VML elements. The tooltip will display the following information:

· Event name

· Source

· Source description, controlling operation center

· Direction

· Number of lanes closed

4.15.4 The system will check for a matching permit number in the gv_EORSClosurePt view. If a matching number is found, the system will append the EORS permit information to the tooltip as described in 8.20.3.

4.16 Winter Storm Management Segments (WSMS)

4.16.1 Database Design

[image: image63.wmf]g_WSMS

PK

ObjectID

Shape

WSMS_Key

Route

Segment

Direction

Limits

Shop

County

gv_WSMS

The mapping_WSM view (currently exists in EOSR database) joins the route_directions, route_segments, segment_conditions, string_table, and color_codes tables. The Key field uniquely identifies the row.

4.16.2 The WSMS VML will be generated from the G_WSMS layer in SDE database. The G_WSMS layer will generate one VML segment and one shadow for each WSMS segment. The shadow offset will be determined by the road direction. The main segment and the shadow will have an ID that matches the mapping_WSM view.

4.16.3 The VML segment color is based on the segment status within the database. Each VML segment will have a shadow element that displays the road condition of the opposite direction. The display property of both the main element and the shadow element will be dynamically assigned by changing their shapetype. Predefined VML segments will have IDs that match the key field in mapping_WSM. When the VML condition is updated, the VML shape color will be changed.

4.16.4 WSMS will be displayed as VML elements with the following tool tip information:

· Route name, Segment id

· Limits

· Route directions, road condition description and segment color

· Time of last update

When a Shadow element is used, tool tip information will be assigned to the main element as its title and will show data for both directions. Under these conditions, the tool tip will be displayed as a single line string. This functionality is due to a VML limitation.

4.17 Shop/District-Wide Road Condition Summary Report

4.17.1 Database Design

[image: image64.wmf]g_IPS

PK

Shop

PK

Zone

ObjectID

Shape

Name

CountyName

District

ResMaint

gv_IPS

ObjectID

 [image: image65.wmf]mapping_ips

date

shop

zone

interstate

primary

secondary

key

g_Shop is a point layer storing shop locations. The gv_IPS view joins mapping_ips view (from EORS database) and the g_Shop table on a concatenation of the Shop and Zone fields.

4.17.2 Each district summarizes the interstate (I), primary (P) and secondary (S) highway road conditions into a set of three values. The map displays the district road conditions with a composite icon. The composite icon is a <image> VML element whose source image is decided by combination of the condition values.

4.17.3 The composing icon for each VML element is as follows. If a road type does not apply to the district (field value is null), then the according icon will not show in the composite icon.

Type

Icon
· Interstate Road

[image: image66.png]
· MD primary

[image: image67.png]
· MD secondary

[image: image68.png]
For example, if the shop only monitors interstate and MD secondary roads, only the icons for these two road types will be displayed. The resulting icon would be[image: image69.png][image: image70.png].

4.17.4 The VML element color is decided by the field value.

Value

Color
· 1 Dry or Wet

Green

· 2 Isolated or Overall Coverage
Orange

· 3 Restricted Lanes or Closed

Red

IPS icons will be constructed via separate VML elements that consist of GIF images. The image naming convention is I?.gif, P?.gif, S?.gif, where the ? is a digit from 1 to 3. All images are 21 pixels wide and 9 pixels high. They have been developed to allow for layering around a single point. Below is a table of the images, their names and a comment.
	Image
	Image Name
	Comment

	[image: image71.png]
	I1.gif
	Dry or wet interstates

	[image: image72.png]
	I2.gif
	Isolated or overall coverage for interstates

	[image: image73.png]
	I3.gif
	Restricted lanes or closed interstates

	[image: image74.png]
	P1.gif
	Dry or wet primary roads

	[image: image75.png]
	P2.gif
	Isolated or overall coverage for primary roads

	[image: image76.png]
	P3.gif
	Restricted lanes or closed primary roads

	[image: image77.png]
	S1.gif
	Dry or wet secondary roads

	[image: image78.png]
	S2.gif
	Isolated or overall coverage for interstates

	[image: image79.png]
	S3.gif
	Restricted lanes or closed secondary roads

	
	IPSBlank.gif
	Can be use for any (I, P, S) that are blank.

4.17.5 IPS VML elements tool tips will display the following information:

· Shop Name

· Interstates Status

· MD Primary Roads Status

· MD secondary roads status

· Time of last update

If a road type does not apply for the district, then the tool tip for the road type displays “Not applicable”.

4.17.6 UI Design

[image: image80.png]
4.18 EORS Active Road Closure

4.18.1 The system will display the EORS starting point, and the closure segment (if available) as VML map elements. The starting point is represented by icon ([image: image81.png], RCActive.gif). The road closure segment will be represented by thick orange (255,150,0) line.

4.18.2 ActiveRCTooltipProvider provides following information:

· Tracking Number

· Route Info

· County

· Permit info:

· Permit type

· TCS number

· Reason

· Contact name

· Submitted date

· Closure time period:

· Starting date

· Ending date

· Staring hour

· Ending hour

· Estimated reopen time

· Status

· Remarks

· Approval info

· Closed lanes

4.19 EORS Planned Lane Closure

4.19.1 The Planned Lane Closure starting point will be displayed as ([image: image82.png], RCPlanned.gif). The road closure segment will be displayed as a thick green (0,150,0) line.

4.19.2 PlannedRCTooltipProvider will provide the same information as the ActiveRCTooltipProvider.

4.20 EORS Weather Road Closure

4.20.1 The Weather Road Closure starting point will be displayed as ([image: image83.png], RCWeather.gif). The road closure segment will be displayed as a thick red (240,0,0) line.

4.20.2 The WeatherRCTooltipProvider provides the following information:

· Tracking Number

· Route Info

· County

· Closure start date/time

· Estimated reopen time

· Number of closed lanes

4.21 EORS Pending Lane Closure

4.21.1 The starting point will be displayed as ([image: image84.png], RCPending.gif). The road closure segment will be displayed as a thick blue (100,150,255) line.

4.21.2 The PendingRCTooltipProvider provides the same information as ActiveRCTooltipProvider minus the starting and ending hour.

4.22 Roadway Weather Information System (RWIS)

4.22.1 External Dependencies

RWIS functionality depends on the “RWIS” database view within the CHARTWeb database.

4.22.2 Database Design

[image: image85.png]
The g_RWIS and rwis_mapping tables are joined to facilitate the RWIS summary display. The RWISSensor and RWIS tables are joined to derive individual sensor information for the Sensor Site Map.

The Lk_RWISStatus table converts status text to status code to facilitate “worst condition” querying of collocated sensors.

4.22.3 The RWIS object generates the color-coded square and a “camera pin” symbol as well as the tool tip information. Below is a table of the RWIS VML images and their associated status.

	Image
	Name
	Status

	[image: image86.png]
	RWIS1.gif
	No Report Available

	[image: image87.png]
	RWIS1C.gif
	No Report Available, Camera Site

	[image: image88.png]
	RWIS2.gif
	Dry

	[image: image89.png]
	RWIS2C.gif
	Dry, Camera Site

	[image: image90.png]
	RWIS3.gif
	Wet/Damp

	[image: image91.png]
	RWIS3C.gif
	Wet/Damp, Camera Site

	[image: image92.png]
	RWIS4.gif
	Chemical Wet or Snow/Ice Watch

	[image: image93.png]
	RWIS4C.gif
	Chemical Wet or Snow/Ice Watch, Camera Site

	[image: image94.png]
	RWIS5.gif
	Snow/Ice Warning

	[image: image95.png]
	RWIS5C.gif
	Snow/Ice Warning, Camera Site

	[image: image96.png]
	RWIS6.gif
	Report Older than 2 Hours

	[image: image97.png]
	RWIS6C.gif
	Report Older than 2 Hours, Camera Site

4.22.4 Tool tip information that is greater than 2 hours old will be displayed with white text and a black background.

4.22.5 The system will display the following links when an RWIS icon is clicked:

· Site Map

· Camera Image (if the RWIS site has a camera)

· Scancast Information for the RWIS sensor

· RWIS Site Status

Links will be disabled for items that do not apply to a particular site. In addition, “Not Applicable” will be displayed after the disabled link text. Below is an example of the disabled link.

[image: image98.png]
4.22.6 UI Design

[image: image99.png]
4.23 RWIS Site Map

4.23.1 The system will display the Site Map page when the site map link is activated. The site map will be implemented using the aerial photo images beneath VML/DHTML elements.

4.23.2 RWIS Site Map module inputs will include the system_number, rpu_number, image width, image height, tower left and tower top. The background photo is retrieved via the system_number and rpu_number. The RWIS Site Map will display sensors and weather towers. RWIS Site Map queries are performed against the g_RWIS and SensorSiteMap tables which provide weather tower and sensors locations.

4.23.3 Weather towers are displayed as red triangles ([image: image100.png], Tower.gif). The RWIS object generates the VML tower data. The RWIS tower tool tip shall display the same information as described in 4.22.

4.23.4 The RWISSensor object generates the color-coded symbols for each sensor. The sensor symbols will be the same as specified in 4.24.6. The color is determined by the sensor’s reported weather status. The RWISSensor’s GetCHARTTooltip function generates the tooltip for the sensor that contains the following information:

4.23.5 UI Design

[image: image101.png][image: image102.png]
4.24 Salt Dome

4.24.1 Database Design

The G_SaltDome SDE layer stores salt dome shop locations. The V_SaltDomes view joins the four tables in the diagram below.

The Gv_SaltDome view joins the g_SaltDome and v_SaltDome tables.

[image: image103.wmf]salt_dome_info

PK

record_id

FK1

shop

dome

info

capacity

high_priority

FK2

DomeSiteID

g_Salt_Dome_Site

DomeSiteID

ObjectID

Shape

X

Y

UpdatedTime

Location

shop_info

shop

shop_name

county_name

district

short_name

salt_domes

shop_id

dome_id

qty_salt

shop_name

county

description

district

capacity

high_priority

x

y

domelocid

percentfull

4.24.2 The system displays salt dome shops as point symbols. Each salt dome shop is represented by a VML element.

4.24.3 The VML element color is based on calculated “percentfull” value (methods to be decided) in the v_SaltDome view.

· If percentfull >= threshold value, icon is blue ([image: image104.png], SaltDomeHigh.gif).

· If percentfull < threshold value, icon is red ([image: image105.png], SaltDomeLow.gif).

4.24.4 The “Threshold value” is based on the “high_priority” field:

· If high_priority == 1, then the threshold value is equal to 0.75

· If high_priority != 1, then the threshold value is equal to 0.5

4.24.5 If multiple VML elements, with different colors, are collocated then a red icon will be displayed.

4.24.6 All collocated salt domes will have a single tooltip. The SaltDomeTooltipProvider object provides following information for each salt dome at a shop location:
· Salt dome location

· Shop name

· County,

· Capacity

· Percentage full

4.24.7 UI Design

[image: image106.png]

4.25 Automated Vehicle Location (AVL)

4.25.1 Database Design

[image: image107.wmf]g_Vehicle

PK

ObjectID

Shape

Bearing

VehicleID

DriverID

Direction

Speed

Condition

ReportTime

ArriveTime

ClearTime

4.25.2 The AVL server will be modified to save AVL data to the SDE database.

4.25.3 Vehicles that have reported data in last 24 hours will be displayed as VML elements. The VML color will be based on following rules:

· If data is older than 10 minutes the color will be gray ([image: image108.png], RAVLGray.gif, [image: image109.png] LAVLGray.gif).

· If data is within last 10 minutes, then:

· If the case is not cleared then the color will be orange ([image: image110.png], RAVLOrange.gif, [image: image111.png] LAVLOrange.gif)

· If the case is cleared then the color will be green ([image: image112.png], RAVLGreen.gif, [image: image113.png] LAVLGreen.gif)

4.25.4 VML element rotation will utilize the direction data reported by the vehicle.

4.25.5 AVL vehicles will be displayed as VML elements that are rotated to show the direction of travel. The tool tip will provide the following information:

· Status (active, inactive, or responding to incidents)

· Driver ID

· Road Name

· Road Direction

· Condition

· Last Report Date/Time

4.25.6 Clicking a vehicle will cause the map to zoom to the vehicle and the data frame will display the vehicle information. The vehicle information will include links to the dispatch and summary reports from the AVL server.

4.25.7 UI Design

[image: image114.png]
5. Device Editor

The current Device Editor application will be modified to support SDE layer editing. Previous shape files will be migrated to SDE layers including the Closed Circuit TV (CCTV) and Roadway Weather Information System (RWIS) files. Layers currently mapped through SQL tables will also be migrated to SDE, including Traffic Speed Sensor (TSS/RTMS) and Dynamic Message Sign (DMS).

New device editor modules for HAR, SHAZAM, Landmark and Salt Dome features will be added to the system.

5.1 Database Design

Please see the corresponding section in Section 4 for database design information for each individual layer.

5.2 State Transition Diagram for Device Editor

[image: image115.png]
5.3 CCTV

5.3.1 CCTV editing will remain the same as in the current application.

5.3.2 User Interface

[image: image116.png]
5.4 RWIS

5.4.1 RWIS editing will remain the same as in the current application.

5.4.2 User interface

[image: image117.png]
5.5 DMS

5.5.1.1 “Bearing” editing will be added to the current Device Editor application.

5.5.1.2 All non-located DMSs will be displayed in a list box. Selecting a DMS name will allow the user to locate the DMS by clicking on the map.

[image: image118.png]
5.6 HAR

5.6.1 All non-located HAR will be displayed in a list box. HAR editing shall allow for frequency updates.

[image: image119.png]
5.7 SHAZAM

5.7.1 All non-located SHAZAM will be displayed in a list box. SHAZAM editing will allow for “bearing” field updates to facilitate directional offsets (similar to DMS).

[image: image120.png]
5.8 Landmark

5.8.1 Landmark inputs require name, category, description and URL link fields.

[image: image121.png]
5.9 RTMS

5.9.1 Managing RTMS Sites

RTMS devices that are collocated (often at same location but for different directions) will be grouped together as RTMS sites. Each RTMS site may have one or more RTMS devices. Each RTMS device may have one or more zones.

RTMS site management is similar to other feature management. Users can add, remove or modify RTMS sites. Below s an example of the RTMS site editing interface.

[image: image122.png]
5.9.2 Assigning RTMS Devices to RTMS Sites

The following screen will be used to assign RTMS devices to RTMS sites and to edit the zone display settings:

[image: image123.png]
The upper grid lists all of the RTMS devices. This upper grid is read-only and will allow selection of a single row. Grid headers will facilitate data sorting via user clicks. The bottom grid will display zone setting and facilitates zone edits.

The map will zoom to a site when the user highlights a record in the grid (provided the record has already been assigned a site). The “zone display setting” grid will display the zone number (read-only), whether to display (0 or 1 using a combo box), bearing (integer between 0 and 360) and direction (combo box with choice of south, north, east, west, inner loop or outer loop).

RTMS device site assignment is facilitated via the “Assign Site” button. Once activated, the user is instructed to click on a RTMS icon on the map. The system will prompt the user for confirmation and, if confirmed, will save the data to database. Section 5.9.1 defines the process of adding an RWIS site to the system.

5.10 Salt Dome

5.10.1 Managing Salt Dome Sites

In similar fashion to RTMS, the collocated salt domes (often at same shop) will be grouped together as Salt Dome Sites. Each Salt Dome Site may have one or more salt domes.

Salt dome site management is similar to other feature management. Users can add, remove or modify Salt Dome Sites. Below is an example of the Salt Dome Site editing interface.

[image: image124.png]
5.10.2 Assigning Salt Domes to Salt Dome Sites

When a user clicks the Assign Salt Dome to Site button (shown above), the system will launch the following screen:

[image: image125.png]
The Salt Dome Assign Site grid lists all salt domes from the salt_dome_info table. Data can be sorted by clicking on the header cells. The user cannot edit within but will select a single row for assignment. After highlighting a row, the user can click “Assign Site” button and then click a salt dome site (on the map) to assign the dome to the site. Locating new Salt Dome Sites is described in section 5.10.1.

6. User Interface Design

[image: image126.wmf]

[image: image127.png]
1. AppFrame is the highest-level frame that includes all child frames.

2. The TabFrame hosts a set of tabs that allows user to switch between map themes.

3. The ToolFrame hosts the map navigation and other map related tools. The ToolFrame also hosts the menu system that allows the user display event data and other detailed information.

4. The HiddenFrame (not displayed above) will be used to submit and receive information from the server.

5. The ContentFrame is further divided into a MapFrame on the left and a data frame (ResultFrame) on the right. The border between the map frame and the result frame is movable (horizontally), allowing the user to define how much map/result space is needed. The Resultframe will display data as well as legend and zoom to route or landmarks. The subframes that spit the parent Resultframe as also defined as moveable (vertically). This will allow users to maximize certain subframe areas as needed.

6. ButtomMapInfoFrame will display the current tool selected and instructions for user activities.

7. Appendix

7.1 Entity Naming Convention

7.1.1 Generally, all entity and variables are named following the Hungarian Naming Convention (i.e. The first letter of each word is capitalized, no space or under score between words). Entity and variables are usually prefixed to identify the type of entity.

7.1.2 Database views that are newly created will be prefixed by “vw_”

7.1.3 Spatial layers will be prefixed by “g_” followed by description. For example, RWIS tower layer will be named g_RWISTower. Layers are further defined by a secondary classification; “gd_” or “gg_”. “gd_” is designated as a detailed layer and “gg_” as a generalized layer.

7.1.4 Spatial (ArcSDE) views are prefixed by “gv_” followed by view description. For example, RWIS tower view (with status and other information) will be named gv_RWISTower.

7.1.5 Lookup tables will be named with a description suffixed with “_lkp”. For example, the lookup table for event type will be named event_type_lkp.

7.1.6 JavaScript functions and variable names will start with a lowercase character.

7.1.7 All HTML elements must follow strict tag nesting convention, i.e. for every opening tag, there must be a closing tag and tags are will be properly nested.

7.2 Exception Handling

The Microsoft Exception Management Application Block module shall handle exceptions. The Microsoft Exception Management Application Block module can log exceptions to the system event log.

Please refer to http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/emab-rm.asp for details on usage.
7.3 Background Map Layers Information

Background data layers are collected from a variety of data sources, mainly SHA GIS division. Data for surrounding states are from ESRI data CDs.

GD_MDCOUNTIES

Description

The source data set was developed from SHA county line work. It includes detailed polygons for all 24 counties within Maryland and is only visible below 1:159998.

Development

Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE. The “County” column provides the attribute for the ArcIMS text. This data set should not have to be updated.

GD_SHAGRIDPOLYGON

Description

SHA GRID polygons represent the polygonal areas that were converted from source SHA Intergraph files. These polygons were taken from several different levels within the CAD file and they represent several different types of areas. This layer has been configured in ArcIMS to support the annotation (SHAGRIDTEXT) layer and is only visible below 1:50000.

Development

The existing files should be updated by the output from a current SHA project to coordinate Intergraph and ESRI road data.

GD_MDUSROADS

Description

This file was developed as a subset of the SHA Roads Network Layer that contains detailed roads and road attribution for the state of Maryland only. Its geometry is viewable from 1:50001 to 1:159998. It is important to note that the road shields are displayed from 1:159998 to 1:1. This layer provides the US roads shields while the GRID files are displayed.

Development

The SHA Roads Network layer was queried for all roads that contained “US” in the MP_RTE_PRE column. The resulting (selected) line work was saved as a separate data set. The data set was dissolved (ArcMap) based on MP_RTE_NO to group roads by their respective route number. The resulting file was checked for attribution and loaded into SDE.

GD_MDINTERSTATES

Description

This file was developed as a subset of the SHA Roads Network Layer that contains detailed roads and road attribution for the state of Maryland only. Its geometry viewable from 1:50001 to 1:159998. It is important to note that the road shields are displayed from 1:159998 to 1:1. This layer provides the Interstate roads shields while the GRID files are displayed.

Development

The SHA Roads Network layer was queried for all roads that contained “IS” in the MP_RTE_PRE column. The resulting (selected) line work was saved as a separate data set. The data set was dissolved (ArcMap) based on MP_RTE_NO to group roads by their respective route number. The resulting file was checked for attribution and loaded into SDE.

GD_SHAGRIDBRIDGES

Description

This file was developed as a subset of the SHA Roads Network Layer that contains detailed roads and road attribution for the state of Maryland only. Its geometry is viewable from 1:50000 and below in conjunction with the SHA GRID files. This file was specifically created to add display of Maryland bridges that are not contained within the SHA GRID files.

Development

This data set was basically generated by clipping the SHA Roads Network against the detailed Maryland county boundaries to leave just detailed bridges. The (ArcMap) clipping routing will select what is “common” among the two data sets, therefore the reverse of the counties data set was required (i.e. just the water area). To produce a “water only” data set from the detailed counties layer, a polygon box was added outside of Maryland. Topology was built and a label created from the new polygon. The “land” polygons were deleted by selecting LPOLY# and RPOLY# = the new polygon # within ArcEdit. Other “island” polygons were hand deleted from the data set and its topology was built. The resulting “water” polygon was used for the clipping routine which left only bridge line work. Since the SHA GRID files and the SHA Roads Network line work are not coincident in all areas, the alignment of the bridges data set may appear slightly off in some places. Appropriate AXL symbology was used to offset this display issue.

GD_SHAGRIDTEXT

Description

SHA GRID TEXT layer represents the text baselines that were converted from source SHA Intergraph files. These lines were taken from several different levels within the CAD file and they represent several different types of text. This layer has been configured in ArcIMS to be visible below 1:15000.

Development

The existing files should be updated by the output from a current SHA project to coordinate Intergraph & ESRI road data.

GD_SHAGRIDCENTERLINE

Description

SHA GRID CENTERLINE layer represents the street centerlines that were converted from source SHA Intergraph files. These lines were taken from several different levels within the CAD file and they represent several different types of roadwork. This layer has been configured in ArcIMS to be visible below 1:50000.

Development

The existing files should be updated by the output from a current SHA project to coordinate Intergraph & ESRI road data.

GD_MDSECONDARYROADS

Description

This file was developed as a subset of the SHA Roads Network Layer that contains detailed roads and road attribution for the state of Maryland only. Its geometry viewable from 1:50001 to 1:100000. Basically, this file supports display of additional roads when used in conjunction with GD_MDPRIMARYROADS.

Development

This file was developed from the SHA Roads Network roads that remained after querying for “US”, “IS” and “MD” roads. The “other” roads were placed into this file and the data set was dissolved (ArcMap) based on MP_RTE_NO to group roads by their respective route number. The resulting file was checked for attribution and loaded into SDE.

GD_MDPRIMARYROADS

Description

This file was developed as a subset of the SHA Roads Network layer that contains detailed roads and road attribution for the state of Maryland only. Its geometry viewable from 1:50000 to 1:250000. This layer provides the Maryland (rectangular) roads shields while the GRID files are displayed.

Development

The SHA Roads Network layer was queried for all roads that contained a “MD” in the MP_RTE_PRE column. The resulting (selected) line work was saved as a separate data set. The data set was dissolved (ArcMap) based on MP_RTE_NO to group roads by their respective route number. The resulting file was checked for attribution and loaded into SDE.

GD_MDCOUNTYLINES

Description

The data set includes detailed polygons for Maryland county lines. This data set is viewable from between 1:1 and 1:159999. This file was developed to further define the breaks between the counties when the detailed data sets are displayed. It is important to note that all shoreline information has been removed from this file, so therefore only the “interior” line work is displayed within this file.

Development

This file was created from a source SHA county data set. Shorelines were removed by selecting arcs that LPOLY# and RPOLY# = 1 and deleting within ArcEdit. The file was then loaded into SDE. This file aligns with the SHA GRID polygonal data set.
WATER_BOX

Description

This file was created to form a simple polygon background for a water color fill (R-230,G-255,B-255). It is positioned as the first layer within the AXL file so that it is rendered first, and therefore all other layers draw on top of the layer.

Development

This data set was developed by drawing a large rectangle around the surrounding states and into the Atlantic Ocean. This data set should not need to be updated.

GG_MDCOUNTIES

Description

The source data set was developed from SHA county line work. It includes generalized polygons for all 24 counties within Maryland and is only visible above 1:159999.

Development

The source data set was “generalized” (ArcInfo workstation command) using a tolerance of 200 with the errorcheck argument. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE. The “County” column provides the attribute for the ArcIMS text.

GG_MDUSROADS

Description

This file was developed via a generalization of the gd_MDUSRoads and contains the US roads within Maryland only. It is viewable from the initial view down to 1:159999. This file was specifically designed to decrease initial map generation and site loading as well as map display of the major corridors and areas. It is important to note that road shields are set to display at 1:1000000 (and below) so that they do not show up on initial load.

Development

The source data set was “generalized” (ArcInfo workstation command) using a tolerance of 200 with the errorcheck argument. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE. The “mp_rte_no” column provides the attribute for the ArcIMS shields.

GG_MDINTERSTATES

Description

This file was developed via a generalization of the gd_MDInterstates and contains the Interstates for Maryland only. It is viewable from the initial view down to 1:159999. This file was specifically designed to decrease initial map generation and site loading as well as map display of the major corridors and areas. It is important to note that road shields are set to display at 1:1000000 (and below) so that they do not show up on initial load.

Development

The source data set was “generalized” (ArcInfo workstation command) using a tolerance of 200 with the errorcheck argument. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE. The “mp_rte_no” column provides the attribute for the ArcIMS shields.

GG_MDCOUNTYLINES

Description

The data set includes generalized polygons for Maryland county lines. This data set is viewable between 1:160000 and 1:250000. This file was developed to further define the breaks between the counties when generalized data sets are displayed. It is important to note that all shoreline information has been removed from this file, so therefore only the “interior” line work is displayed within this file.

Development

This file was created from the generalized SHA counties data set (gg_MDCounties). The gg_MDCounties data set was copied and edited within ArcEdit (ArcInfo Workstation). Lines that contained LPOLY# or RPOLY# = 1 were selected and deleted. The resulting data set was loaded into SDE.

GD_ADJACENTSTATES

Description

The data set includes detailed polygons for West Virginia, Pennsylvania, Delaware, New Jersey, New York and Virginia, Ohio, Kentucky and Washington DC. This data set is viewable from 1:1 to 1:15998 along with the state name. This data set is coincident with both the gd_MDCounties and all of the SHA GRID layers.

 Development

This was developed from a detailed conversion of ESRI source data CD information. Specifically, the ESRI Data & Maps 2002 series utilizing the GDT (Dynamap 2000) States data set. The original data set was in decimal degrees and was converted to Maryland Stateplane after extracting the required states. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE.

GG_ADJACENTSTATES

Description

The data set includes generalized polygons for West Virginia, Pennsylvania, Delaware, New Jersey, New York and Virginia, Ohio, Kentucky and Washington DC. This data set is viewable from the initial view down to 1:15999 along with the state name.

Development

This was developed from a generalized conversion of ESRI source data CD information. Specifically, the ESRI Data & Maps 2002 series utilizing the GDT (Dynamap 2000) States data set. The original data set was in decimal degrees and was converted to Maryland Stateplane after extracting the required states. The resulting coverage was “generalized” (ArcInfo workstation command) using a tolerance of 200 with the errorcheck argument. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE.

GG_ADJACENTUSROADS

Description

This file contains US Roads for the surrounding states and was developed from a generalized conversion of ESRI source data CD information. Specifically, the ESRI Data & Maps 2002 series utilizing the GDT (Dynamap 2000) US Major Roads data set. It is viewable from the initial view down to 1:1. This file was specifically designed to decrease initial map generation and site loading as well as map display of the major corridors and areas. Road shields are not set to display for this layer.

Development

Source data from CD queried for US type and then dissolved based on Sign1 attribute column. The source data set was then “generalized” (ArcInfo workstation command) using a tolerance of 200 with the errorcheck argument. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE.

GG_ADJACENTINTERSTATES

Description

This file contains Interstates for the surrounding states and was developed from a generalized conversion of ESRI source data CD information. Specifically, the ESRI Data & Maps 2002 series utilizing the GDT US Major Roads data set. It is viewable from the initial view down to 1:1. This file was specifically designed to decrease initial map generation and site loading as well as map display of the major corridors and areas. Road shields are not set to display for this layer.

Development

Source data from CD was queried for IS type and dissolved based on Sign1 attribute column. The source data set was then “generalized” (ArcInfo workstation command) using a tolerance of 200 with the errorcheck argument. Topology and attribution were checked via ArcEdit and the resulting file was loaded into SDE.

7.4 Requirement Design Mapping

7.4.1 CHART Intranet Mapping Requirements Mapping

	Requirement Section ID
	Design Section ID

	5.1
	2.2

	5.2
	2.2

	5.3
	2.2

	6.1
	2.2

	6.2
	2.5.1

	6.3
	2.2

	6.4
	Documentation and Training

	7.1
	2.1

	7.2.1
	7.3

	7.2.2
	2.2.4

	7.2.3
	2.2.3

	7.3
	2.2.5

	7.4
	2.2.6

	7.5
	2.2.1

	7.6
	3.3

	7.7
	5

	7.8
	3.4

	8.1
	4.1

	8.2
	4.1

	8.3
	4.2

	8.4
	4.3

	8.5
	4.4

	8.6
	4.5

	8.7
	4.6

	8.8
	4.7

	8.9
	4.8

	8.10
	4.9

	8.11
	4.10

	8.12
	4.11

	8.13
	4.12

	8.14
	4.13

	8.15
	4.14, 4.1

	8.16
	4.14, 4.1

	8.17
	4.15

	8.18
	4.16

	8.19
	4.17

	8.20
	4.18

	8.21
	4.19

	8.22
	4.20

	8.23
	4.21

	8.24
	4.22

	8.25
	4.23

	8.26
	4.24

	8.27
	4.25

7.4.2 CHART Web Mapping Requirements Mapping

	Requirement Section ID
	Design Section ID

	7.1
	2.2

	7.2
	2.2

	7.3
	2.2, 7.3

	8.1
	4.1

	8.2
	4.1

	8.3
	4.22

	8.4
	4.3

	8.5
	4.4

	8.6
	4.5

	8.7,8.8
	4.6

	8.9
	4.7

	8.10
	4.19

	8.11
	4.18

	8.12
	4.20

	8.13
	4.15

	8.14
	4.9

	8.15
	4.10

	8.16
	4.11

	8.17
	4.12

	8.18
	4.13

	Page 41 of 41

_1111004207

_1112617145.vsd
�

Table�

�

�

tss_comm_mode�

PK,FK2	device_id

FK1	mode_id
 	timestamp�

tss_traffic_data�

PK,FK1	device_id
PK	zone_group_num

 	speed
 	volume
 	percent_occupancy
 	timestamp�

tss_devices�

PK	device_id

 	device_name
 	location
 	removed
 	timestamp
 	assigned
FK1	TSSSiteID�

tss_op_status�

PK,FK2	device_id

FK1	status_id
 	timestamp�

�

tss_zones�

PK,FK1	device_id
PK	zone_group_num

 	description
 	direction
 	default_speed
 	timestamp
 	Display
 	Bearing
 	DirectionText�

tss_comm_lkp�

PK	mode_id

 	mode_text
 	time_stamp�

tss_status_lkp�

PK	status_id

 	status_text
 	time_stamp�

g_TSSSite�

PK	TSSSiteID

 	ObjectID
 	Shape
 	Location
 	X
 	Y�

�

�

�

�

_1112778257.vsd
�

Table�

�

�

View�

�

g_IPS�

PK	Shop
PK	Zone

 	ObjectID
 	Shape
 	Name
 	CountyName
 	District
 	ResMaint�

gv_IPS�

ObjectID�

_1111486193.vsd
�

Table�

�

�

g_Landmark�

PK	ObjectID

 	Shape
FK1	Category
 	Name
 	Description
 	URL
 	UpdateTime�

Landmark_Category_lkp�

PK	Category_ID

 	Description�

�

_1111912481.vsd
�

Table�

�

g_Vehicle�

PK	ObjectID

 	Shape
 	Bearing
 	VehicleID
 	DriverID
 	Direction
 	Speed
 	Condition
 	ReportTime
 	ArriveTime
 	ClearTime�

_1106662795.doc
[image: image1.png]

Advanced Networked Systems Center

